The rise and fall of learning: A neural network model of the genetic assimilation of acquired traits

نویسندگان

  • James R. Watson
  • Janet Wiles
چکیده

The genetic assimilation of learned behaviour was introduced to the wider evolutionary computation field by the classic simulation of Hinton and Nowlan. Subsequent studies have analysed and extended their initial framework, contributing to the understanding of the often counterintuitive relationship between evolution and learning. We add to this increasing body of literature by presenting an evolving population of neural networks that plainly exhibit the Baldwin effect. Phenotypic plasticity, embodied in the literal learning rate of the neural networks, is evolved along with the network connection weights. Significantly, high levels of plasticity do not cause the population to genetically stagnate once correct behaviour can be learned. Rather, continuing inter-population competition drives the levels of learning down as beneficial behaviour becomes genetically specified. By observing the evolving learning rate of the agent population, and by comparing learned and innate agent responses, we demonstrate the Baldwin effect in its entirety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Evolutionary Cost of Learning

Traits that are acquired by members of an evolving population during their lifetime, through adaptive processes such as learning, can become genetically speciied in later generations. Thus there is a change in the level of learning in the population over evolutionary time. This paper explores the idea that as well as the beneets to be gained from learning, there may also be costs to be paid for...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

ارزیابی کاربرد شبکه عصبی مصنوعی و بهینه‌سازی آن با روش الگوریتم ژنتیک در تخمین داده‌های بارش ماهانه (مطالعه موردی: منطقه کردستان)

Estimating spatial distribution of precipitation is vital to execute water resources plans, drought, land-use plans environment, watershed management, and agricultural master plans. High variation in amount of precipitation in various parts, lack of measurement stations, and the complexity of relationship between precipitation and parameters affecting it have doubled the importance of developin...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002